During the last 5 years, research on Human Activity Recognition (HAR) has reported on systems showing good overall recognition performance. As a consequence, HAR has been considered as a potential technology for e-health systems. Here, we propose a machine learning based HAR classifier. We also provide a full experimental description that contains the HAR wearable devices setup and a public domain dataset comprising 165,633 samples. We consider 5 activity classes, gathered from 4 subjects wearing accelerometers mounted on their waist, left thigh, right arm, and right ankle. As basic input features to our classifier we use 12 attributes derived from a time window of 150ms. Finally, the classifier uses a committee AdaBoost that combines ten Decision Trees. The observed classifier accuracy is 99.4%.
Ugulino, W.; Cardador, D.; Vega, K.; Velloso, E.; Milidiu, R.; Fuks, H.
Proceedings of 21st Brazilian Symposium on Artificial Intelligence. Advances in Artificial Intelligence – SBIA 2012. In: Lecture Notes in Computer Science. , pp. 52-61. Curitiba, PR: Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-34458-9. DOI: 10.1007/978-3-642-34459-6_6.